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Abstract

In the literature, an extensive work on sequential fixed-width confidence interval for the parameter
of U(6, m6) model, where m > | is known, is available. In this article, we propose a two-stage sampling
procedure for estimating the parameter 0 of U(a0, b0) distribution, where a < b are positive and
known. Here, the risk of an estimator Oof 0 is less than a pre-assigned number w (>0), that is,
R(B 0)=AE, [(0 0)’1<w,0 <A < 0 is known.We determine the parameter B, of stopping variable
so that the risk is uniformly bounded by a pre-assigned value w.We have also tabulated the values of the
expected stopping time and its standard deviation (SD).
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|. Introduction

Graybill and Connell,"! Cooke,?*! Govindarajulu,*> Akahira and Koike,' and Koike!” have introduced
many sequential estimation methods for uniform distribution. The problem of obtaining confidence
intervals having a specified width for the parameter in the density U(6, m6) distribution, where m > 1 is
known and 6 > 0, have been considered by Patil and Rattihalli.®! Bhattacharjee and Mukhopadhyay™ have
discussed the purely sequential procedure for the unknown parameter 6 of U(0, 6) distribution. The
unknown parameter 6 is estimated by four different estimators in stopping rule, and the two different
estimators of @ were proposed in the loss function. Patill'” has considered the two-stage estimation procedure
for the parameter of U(6, m6) distribution. Bhattacharjee and Mukhopadhyay!'" have proposed the purely
sequential minimum risk point estimation procedure for the parameter ¢ of the U(0,6) distribution. Patil'*!
has considered the purely sequential procedure for the parameter of the U(6, m#) distribution.
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Various methods of sequential estimation of the scale parameter of an exponential distribution have
been introduced by many authors, for example, Zacks and Mukhopadhyay,!'>!'¥' Mukhopadhyay and
Pepel'™, Zacks,' etc. Zacks and Khan!'? studied the confidence intervals of the mean and scale
parameter of a gamma distribution. Mahmoudi and Roughani'® have considered bounded risk
estimation of the scale parameter of a gamma distribution in a two-stage sampling procedure. For
details, see Ghosh et al.[']

The U(a0, b0) distribution is appropriate in a following situation. Consider an agriculture experiment
where we want to study the impact of unknown soil fertility gradient 6 of a plot on the yield/growth of a
certain crop, which is an observable random variable, say X, whose range depend on 6, say a6 and b8,
where a < b are positive and known. It is but natural to assume that both af and b6 are increasing
functions of #. Assuming that 6 is the only unknown entity, the random variable X has U(a#, b6)
distribution. The problem of interest is to find a point estimate of soil fertility gradient (6).

In this article, we propose an efficient two-stage procedure for estimating the parameter 6 of U(a#,
b0) distribution. Section 2 contains the fixed sample size procedure (FSS) solution and estimation
problem. In Sections 3, we propose a two-stage procedure and compute value of B = B,. In Section 4 we
give the average sample number (ASN) function and standard deviation (SD) of N,. In Section 5, some
numerical values of ASN function and SD are computed.

2. Fixed Sample Size Procedure

Let X, X, ..., X beindependent identical distributed (iid) random variables with U(a0, b0) distribution,
where a < b are positive and known. LetX(l) =min(X, X, ..., X)) andX(n) =max(X,, X,, ..., X ). Note that
X(n)/b <6< Xm/a almost surely (as). Then X(n)/ll is the maximum likelihood estimator of6). That is 0 =
X,,,/b and the loss function for estimating & by 6 is given by

L(0,0)=A0-0), 2.1)

where A is positive known weight. Our goal is to make the associated risk less than a pre-assigned
number w (> 0); that is, 4E[(6-60)]<w-
The risk in estimating @ by 0 is R(0,0) = AE[(6 —0)*]=2460(b—a)*/(n+1)(n+2)b> and this risk

will be at most w that is R(é,@) < w, which implies 246°(b—a)’/(n+1)(n+2)b* < w. We know that

27 2 2.7 \2
(n+1) (142) > (+1)2. So, we have (n+1) > 220 C=D pavisns 20O\ Ghere '
wh? wh?

is called the “optimal fixed sample size”. When @ is unknown, FSS procedure fails. In the light of this
problem, we propose an efficient two-stage procedure.

3.Two-stage Procedure

Stage 1: For a fixed £, take an initial sample X|, X, ..., X, from U(a0, b0) distribution. Then determine
D=min(X, X, ..., X) and X =max(X, X, ..., X,). Take 0 = X/b. We propose the stopping rule:
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N, = N(k, B,w) :max{ K, L\/2BX2(b—a)2/wb4J+l}, G.1)

where B is a positive coefficient and LxJ denotes the largest integer less thanx. The coefficient B will
be determined appropriately as the risk is bounded by w. We will see that B is only a function of 4, k, a
and b. While B is known, if N, = k, stop and do not take more observation in the second stage, otherwise
go to the second stage.

Stage 2: If N > k, the initial sample is not large enough, we must gather N, — k additional observation
in the second stage, say Y XY , X - Let Z=max(X,,,,X LX) We estimate the

k+12 k429 " k+1> k+2° "
parameter 6 by 0 v, =Y =max(X,Z)/b. The risk associated with this estimator is given by
AE[(Oy, —0)']. If F is the o-field generated by X, X, ....X, then X, X, .....are independent of F.

k+17 “ k2

Now we obtain the value of B. Now, we obtain the value of B:

ROy, ,0)= AE[(Oy, —0)]1= AE[(Y —0)*]= AE{EK%_QJ m} }

- AE{E[(X/b ~0)IF, ]} ; AE{E[(Z/b ~0)'|F, ]}

:bizE{E[(X—be)z |Fk}}+b£2E{E[(Z—b9)z \F,]}

We know that there are k samples in the first stage and (N, — k) samples in the second stage. Thus

R(By, .0) = %E{M;\]—ME[(X—IJO)Z |Fk}}+bi25{1\’k‘_k”‘15[(z_b9)2 m}}

k Nk
Since
KE[(X —bB)*] < (N, —k+k)E[(X - b6)*]
and
(N, ~k)E[(Z~b6)*1 < (N, —k +k)E[(Z ~b6)’],
so we have

A 4 |k > A4 [N —k >
R(ONk,9)>b—2E{N—kE[(X—b9) |FJ}+b—2E{ % E[(Z—be) FJ}
We can write
KE[(X —b0)*] - KE[(X —b0)’] and N =H) E[(Z - b0Y] < W, =6
N N N/’ N

k k k

R(Bx,.0) >§E{%E[(X—b9)z m}}%g{va—zk £[(z-bo) IFJ}

k k

LZE[(X—bH)2|E€J}+i2E Nk—zkE[(Z_<b9_ (b-a)0 , (b-a)0 >] IFJ
N, b N,

[(Z-b6)’].

R(éNA,9)>iZE
b f f N, —k+1 N, —k+1
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A | k A4 N~k b-ap \ (b-a)p

R©x,.0)> 5 B\ E[ (X =b0)'|F, | b+ 5 E{ =2 F|| 2~ (b0 - (b=ap \ (-a0 | .
b= Ny b N, N —k+1] N, —k+1

R(éNk,9)>i2E{ k2E[(X—be)z|ﬂ}}+éE{Nk_‘2"EHZ—<b9— (b-a)6 >J + (b_“y@zzm”.
» N, 5| N, N—k+1/) TN, —k+1)

Since algebraic sum of deviation of observations about its mean is zero, we have

R(éNHO)>%E{%(X—b9)2}+b£2E{N]’;]_2k|:Var(Z)+ (b—a)292 :|}

k k (Nk_k+l)2

. A A
Ry, .0)> b—zE{%(X—bQ)Z}Jr—E{

k bz
- Al Sk o o0 (N, —k)b-a)0*| N,—k
R(eNk,9>>b2(E{Nkz(X b9)}+E{ NN, Er D) {(Nk—ku)”m‘ (3.2)

A A
R(eNk,9)>b—2(J, +J,),

N, k| (N, —k)b—a)6* +(b—a)292
N7 | (N, —k+1*(N,—k+2) (N, —k+1)* ||

k
where J, :E{N _ (X—bG)Z}

k

and JzzE{(Nk_k)(b_a)zez{ N, -k 1}}

+
N(N,—k+1) | (N, —k+2)

Now, J, :E{%(X—be)z}

k

4
=F LZ(XZ—ZXbGHszZ) —E %(Xz—szGHbZQZ)
N, 2BX*(h-a)

4 2n2
- (122,00 )
ZB(b—a) X X (3'3)

and_]zzE{(Nk_k)(b_a)292|: N, -k H}}

N (N, —k+1)* | (N, —k+2)
(N,—k) 2(b—a)’6’
J, = E{— :
N/ (N, —k+1) (N, —k+2)
We know (N, —k+1) (N, — k+2)> (N, — k)* and 1/(N, — k)* < 1/(N, — k). Further
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_ _ \2p2 _\2p2
J,<E (N, 2k) 2(b-a) 6 _5 2(b az) 0 ’
N, (N, k) N,
_\2p2 4 4 2
2BX (b—a) B X (3.4)

Let ¥ = max(Y,, ¥,, ... Y, ) = max(X,, X, ..., X)/0 = X/0, where Y, — U(a,b). Therefore,

_ k(Y —a)"’l
C (b-a)

so that Equations (3.3) and (3.4) become

J, :sz(l—%E<i>+b2E<—22>]
2B(b-a) X X
kb*w (I_Zb(k+l)+ b (k +1)(k +2) j

T2BMb-a) | (bk+a)  (BK + bk + 2abk +24°)

B kb*w 2a(b—a)’
2B(b—a)’ \ (bk +a)(b’k* + b’k +2abk +2a”)

g(¥)

J - akb*w
" B(bk +a)(b*k® + b’k + 2abk +2a°)’
4 2
g, E{i}
B X
B wh* (k +1)(k +2)
B(b*k* +b*k + 2abk +2a*)’
Taking addition of Equations (3.5) and (3.6), we get the lower bound for risk as below
Awb® {°b+ K (3b+a) + k(2b+4a) + 2a|
B(bk +a)(b*k* + b’k + 2abk +2a*)

~ A
R(@Nk,9)>b—2(Jl+J2):

But RO, ,0) < w, it is sufficient that
Kb+ K (3b+ a) + k(2b+ 4a) + 2a}

B=4b .
(bk + a)(b*k* + b’k + 2abk +2a*)

4. Distribution of Nk

(3.5)

(3.6)

3.7)

The random variable V, is defined by (3.1), it can take the values {k, £+ 1, ...} and hence it is discrete

random variable.

Let 4. = Jb »
I o(b-a)\ 2B

P(N, <) =3 P(N, =n)

n=k

4.1)
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=P(N, =k)+ i P(N, =n)

n=k+1

:p[ W J ZP[" . /ZBX(b a)? ]
w n=k+1

Pl Xk [t | §p[tnh [t X n [ _wb
0 o ZB(b ay |~ m ZB(b a’ 6 0 ZB(b a)’
P[zﬁlkj+ P(l l<£<)‘nj
0 n=k+1 0
(r<

P

) z ()L <Y<)«)whereY:X/0.

o M

k k k-1
—i(b_a)k(y a)” dy+n§+uj Gt

-] G _ka)k (y—a)"dy=1. 42)

Thus, the stopping rule is closed.
Now, we develop the formulas of the first and second moments of N,.

E(V,) = k+ZP(N >k+ )= k+ZP[,/W2k+j—l]
j=1 w
J (k+J) / b'
JHZP[ 0 2B(b—a)2]

o 7.2 7.2
=k+) P Y>M /i , where Y=X/0 and 4, , —M,/i.
= 0(b—a) 2B " 0(b-a) N2B

P(Y>4,,)

—k+ Y (-PY <2, )

Jj=0

EN) =k+3 (1= F, (2. ). 43)

Jj=0

and E(N}) = anP(Nk =)

n=k

=k>+2k) PN, 2k+ j)+ Y j*P(N, =k+ j)
j=1

Jj=1
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) 2 _ 2 0 2 _ 2
=k’ +2k).P JM >k+j-1]+> j°P k+j—1<1IM<k+j
j=1 Wb j=1 Wb
0 s 2
=k*+2k) P X k+j-Do" Jw
~"19” o(b-a \2B
) s 2 7.2
+Zj2P (k+j-Db i<£<(k+j)b w
= 0b—a) V2B 60  0(-a) \2B

0

=k + Z{ZkP(Y > Aoy ) F PPy <Y <A )

J=1

oo U bt fwo (e j=DE | w
e -ay\N2B Y 0(b-a) \2B

where Y = X/ and

E(N}) =k + 3 {2k(1=F, (A N+ 7 (Fy (A )= Fy (B D) (4.4)
I
where Fy (4, ;) is cumulative distribution function (cdf) of ¥ and
F,(A.)=PY <2 _Cay =@ e b
y (A, ) =P < k+j)_W9 ora=s . =0

Hence, the variance of N, is

VIN)=EWN)~(E(N,)). (4.5)

5. Simulation Results

In this section, we compute optimal fixed sample size (n") ASN and SD by simulation based on 10,000
repetitions. We take 4 =2, 0=15and =10 and w= 1, 0.5, 0.25, 0.1, 0.05, 0.025, 0.01. Pseudorangom
samples from uniform population are drawn by using R programme. We compute simulated risk (R) =

E[(@x, —0)*] (sce Tables 1-6).

Remark 5.1: From Tables 1-6, we observe that as value of w decreases, n°, E(N,) and SD
increases.

Remark 5.2: From Tables 1-6, we observe that as the value of k increases, SD decreases and
E(N,), first, increases, then slightly decreases.

Remark 5.3: From Tables 1-6, we observe that as the value of 6 increases, E(N,) and SD
increases.

Remark 5.4: From Tables 1-6, we observe that as value of parameter b increases, E(V,) and SD
increases.

Remark 5.5: From Tables 1-6, we observe that the simulated risk is much less than the pre-
assigned number w. Hence, one can adjust the coefficient B such that the risk remains less than
w.
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Table I. Numerical values of ASN and SD of rule (3.1)

w | 0.5 0.25 0.1 0.05 0.025 0.01
n' 9 13.1421 19 30.6228 43.7214 62.2456 99
E(N,) 10.6213 14.6263 20.4504 32.1421 45.2439 63.8077 100.5816
SD 0.4851 0.6238 0.8408 1.4043 1.9472 2.7767 4.3552
R 0.3187 0.1818 0.1078 0.0451 0.0225 0.0119 0.0048
k=30,A=2,0=10,b=2,a=1
w | 0.5 0.25 0.1 0.05 0.025 0.01
n’ 9 13.1421 19 30.6228 43.7214 62.2456 99
E(N,) 30 30 30 32,1157 45.2811 63.7773 100.5279
SD 0 0 0 0.6120 0.8129 1.0791 1.6248
R 0.0488 0.0507 0.0475 0.0443 0.0234 0.0120 0.0048
Source: All ta Table is obtained by using rule (3.1). Created by author.
Table 2. Numerical values of ASN and SD of rule (3.1)
w | 0.5 0.25 0.1 0.05 0.025 0.0l
n' 14 20.2132 29 46.4342 66.0820 93.8683 149
E(N) 15.5218 21.7447 30.5520 47.9793 67.64801 95.4580 150.6308
SD 0.6956 0.9946 1.3651 2.0857 2.9431 4.1467 6.5352
R 0.3696 0.2027 0.1057 0.0462 0.0243 0.0121 0.0050
k=30,4=2,0=15, b=2,a=1
w I 0.5 0.25 0.1 0.05 0.025 0.01
n' 14 20.2132 29 46.4342 66.08204 93.8683 149
E(N,) 30 30 30.6288 47.9541 67.5907 95.4052 150.5347
SD 0 0 0.4831 0.8431 I.1168 1.5600 24154
R 0.1169 0.1141 0.1076 0.0458 0.0229 0.0124 0.0049
Source: Table is obtained by using rule (3.1). Created by author.
Table 3. Numerical values of ASN and SD of rule (3.1)
w | 0.5 0.25 0.1 0.05 0.025 0.0l
n' 14 20.2132 29 46.4342 66.0820 93.8683 149
E(N,) 15.4444 21.6913 30.4545 47.8678 67.4877 95.2481 150.3052
SD 1.0112 1.4442 2.0182 3.1712 4.4760 6.3384 10.0108
R 0.4056 0.2030 0.1128 0.0456 0.0242 0.0119 0.0048
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k=30,A=2,0=10,b=4,a=1
w | 0.5 0.25 0.1 0.05 0.025 0.01
n" 14 20.2132 29 46.4342 66.0820 93.8683 149
E(N) 30 30 30.6236 47.9533 67.5769 95.3534 150.481
SD 0 0 0.4845 1.1938 1.6362 2.2987 3.6165
R 0.1155 0.1140 0.1047 0.0465 0.0224 0.0118 0.0049
Source: Table is obtained by using rule (3.1). Created by author.
Table 4. Numerical values of ASN and SD of rule (3.1)
w | 0.5 0.25 0.1 0.05 0.025 0.01
n* 21.5 30.8198 44 70.1512 99.6231 141.3025 224
E(N) 22.9546 32.2648 45.4434 71.5610 100.9897 142.6208 225.206
SD 1.5162 2.1298 3.0193 4.7583 6.7158 9.5011 15.0110
R 0.4320 0.2215 0.1167 0.0485 0.0245 0.0124 0.0051
k=30, A=2,0=15b=4,a=1.
w | 0.5 0.25 0.1 0.05 0.025 0.0l
n* 21.5 30.8198 44 70.1512 99.6231 141.3025 224
E(N) 30 32.3626 45.4673 71.6163 101.0929 142.7772 225.4703
SD 0 0.7932 1.1037 1.7047 2.4203 3.4244 54153
R 0.2609 0.2204 0.1175 0.0477 0.0242 0.0120 0.0050
Source: Table is obtained by using rule (3.1). Created by author.
Table 5. Numerical values of ASN and SD of rule (3.1)
w | 0.5 0.25 0.1 0.05 0.025 0.0l
n' 9 13.1421 19 30.6228 43.7214 62.24555 99
E(N) 10.6213 14.6262 20.4504 32.1421 45.2439 63.8076 100.5816
SD 0.4850 0.6238 0.8408 1.4043 1.9472 2.7767 4.3552
R 03114 0.1795 0.1085 0.0446 0.0228 0.0115 0.0048
k=30,A=2,0=10,b=4,a=2.
w | 0.5 0.25 0.1 0.05 0.025 0.0l
n' 9 13.1421 19 30.6228 43.7214 62.2455 99
E(N) 30 30 30 32,1157 45.2810 63.7773 100.5279
SD 0 0 0 0.6120 0.8128 1.0791 1.6248
R 0.0506 0.0509 0.0511 0.0447 0.0229 0.0116 0.0049

Source: Table is obtained by using rule (3.1). Created by author.
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Table 6. Numerical values of ASN and SD of rule (3.1)

w [ 0.5 0.25 0.1 0.05 0.025 0.0l
n* 14 202132 29 46.4342 66.0820  93.8683 149
E(N,) 155218 21.7447 30.5520 47.9793 67.6480 954580  150.6308
SD 0.6956 0.9946 1.3651 2.0857 2.9431 4.1467 6.5352
R 03626 0.2005 0.1063 0.0459 0.0242 0.0120 0.0048

k=30,A=2,0=15b=4,a=2.

w [ 05 0.25 0.1 0.05 0.025 0.0l
n 14 202132 29 46.4341 660820  93.86833 149
E(N,) 30 30 30.6288 47.9541 675907 954052  150.5347
D 0 0 0.48311 0.8431 11168 15600 2.4154
R 0.1129 0.1113 0.1077 0.0452 0.0235 0.0123 0.0049

Source: Table is obtained by using rule (3.1). Created by author.
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